IoT-based Precision Irrigation with LoRaWAN Technology Applied to Vegetable Production

Haozhe Zhang¹, Long He*¹,³, Francesco Di Gioia², Daeun Dana Choi¹, Paul Heinemann¹

¹ Department of Agricultural and Biological Engineering, Pennsylvania State University, University Park, PA 16802, USA; ² Department of Plant Science, Pennsylvania State University, University Park, PA 16802, USA; ³ Penn State Fruit Research and Extension Center (FREC), Biglerville, PA 17307, USA

Introduction

- Agriculture accounts for 80% of water use in the US.
- Deficit or excess of water affects yield and quality of vegetables.
- Conventional irrigation is based on experiences and time availability.
- Precision irrigation decreases cost of water and manpower, and improves crop yield and quality.
- Internet of Things (IoT) makes farmers monitor the field and apply irrigation online.
- LoRaWAN, a new network technology, is not widely used for vegetables irrigation.

Materials and Methods

Experimental Setup

- 4 main pipelines for 4 treatments.
- 3 beds for 3 replicates.
- 0.60 m wide, 1.8 m apart center to center, mulched with black polyethylene film.
- Pressure regulated to 15 psi.
- Pressure sensors measure the water pressure in pipes, indicate if water is on.

Sensor system setup

- Control board
- Supports 8 sensor ports and an irrigation unit
- Soil water content (SWC) sensors
- Pressure sensors
- Soil water potential (SWP) sensors

Technology	Network type	Frequency	Range	Data rate	Power	Security
LoRaWAN | LPWAN | 915 MHz | 10 km | 0.3-50 kbps | 10mW | AES 128 bit
LTE | GERAN/UTRAN | 700-2600 MHz | 10 km | 0.1-1 Gbps | 1 W | 3GPP 128-256 bit
Wi-Fi | WLAN | 2.4, 3.6, 5 GHz | 100 m | 6-780 Mbps | 1 W | WEP, WPA, WPA2

Materials and Methods

Experimental Setup

- 4 main pipelines for 4 treatments.
- 3 beds for 3 replicates.
- 0.60 m wide, 1.8 m apart center to center, mulched with black polyethylene film.
- Pressure regulated to 15 psi.
- Pressure sensors measure the water pressure in pipes, indicate if water is on.

Sensor system setup

- Control board
- Supports 8 sensor ports and an irrigation unit
- Soil water content (SWC) sensors
- Pressure sensors
- Soil water potential (SWP) sensors

Results

- Read sensor data and control valves online stably.
- 4.3% data loss with a 300 m distance from gateway to sensors. May caused by obstacle of walls, long distance, and gateway performance.
- Most sensor boxes worked continuously without changing battery. SWC Sensor box often went down and had wrong readings because of false continuous power supply.

Acknowledgement:
This research was supported in part by the United States Department of Agriculture’s (USDA) National Institute of Food and Agriculture Federal Appropriations (Project PEN04547, Accession No. 1001036), the State Horticultural Association of Pennsylvania (SHAP), the USDA Northeast SARE Research and Extension Grant Project (Grant No. 19-378-33243).

The system can successfully read sensors data and control valves online with a acceptable data loss and low power consumption. SWP sensors work well for the system. But there are problems with SWC sensors power supply.

Conclusion

Testing period: 11/20/2019
- All production data because of no water supply in freezing winter.
- SWP of T2 and T3
- Start on 11/20/2019
- After irrigation on Day 6, sensor readings increase and then gradually decrease.
- 24 hours data on Day 6.
- It took a few hours for the sensor readings to be stable.

No production data because of no water supply in freezing winter.

Feasibility of the IoT system

- Read battery voltage, SWC, SWP, pressure, and valve status.
- Control valves by switching the button.
- Notify farmers when thresholds are reached by mobile app.

Feasibility of the IoT system

- Read battery voltage, SWC, SWP, pressure, and valve status.
- Control valves by switching the button.
- Notify farmers when thresholds are reached by mobile app.

Acknowledgement:
This research was supported in part by the United States Department of Agriculture’s (USDA) National Institute of Food and Agriculture Federal Appropriations (Project PEN04547, Accession No. 1001036), the State Horticultural Association of Pennsylvania (SHAP), the USDA Northeast SARE Research and Extension Grant Project (Grant No. 19-378-33243).

The system can successfully read sensors data and control valves online with a acceptable data loss and low power consumption. SWP sensors work well for the system. But there are problems with SWC sensors power supply.

Conclusion

Testing period: 11/20/2019
- All production data because of no water supply in freezing winter.
- SWP of T2 and T3
- Start on 11/20/2019
- After irrigation on Day 6, sensor readings increase and then gradually decrease.
- 24 hours data on Day 6.
- It took a few hours for the sensor readings to be stable.

No production data because of no water supply in freezing winter.

Feasibility of the IoT system

- Read battery voltage, SWC, SWP, pressure, and valve status.
- Control valves by switching the button.
- Notify farmers when thresholds are reached by mobile app.